English
当前位置:首页 > 师资队伍 > 全体教师

邱琳热科学与能源工程系



个人简介:

       邱琳,教授,博导,国家优秀青年科学基金获得者,北京市科技新星。从事先进材料热物理性质评价方法、热管理用纳米碳材料、相变蓄热新应用等方向的研究。主持国家自然科学基金3项,国家重点研发计划子课题、国家级外专项目、北京市自然科学基金、北京市科技新星计划等省部级以上项目。以第一/通讯作者身份发表SCI期刊论文61篇,其中JCR一区40篇、二区11篇,4篇入选ESI高被引论文(1%),2篇入选全球热点论文(0.1%),总他引1419次,个人Web of Science H因子为24,获授权发明专利13项、、软件著作权2项。担任Rev. Sci. Instrum.副主编,以及Carbon、Appl. Therm. Eng.、Sci. Rep.编委或顾问编委,Energy、J. Therm. Sci.、J. Build. Eng.、Materials、Appl. Sci.客座编辑,60余个SCI期刊的审稿人,以及中国高等教育学会工程热物理专业委员会理事、北京热物理与能源工程学会青年工作委员会委员、中国博士后科学基金及国家自然科学基金等的评审专家。


学习工作简历:

1. 2003年9月-2007年7月,北京科技大学机械工程学院,学士

2. 2007年9月-2012年7月,中国科学院工程热物理研究所,博士(导师: 唐大伟 研究员)

3. 2012年7月-2016年5月,中国科学院工程热物理研究所,助理研究员(唐大伟研究员团队)

4. 2015年3月-2016年3月,美国弗吉尼亚大学机械与航空航天工程系,博士后 (导师: Pamela M. Norris教授)

5. 2016年6月-2021年6月,北京科技大学能源与环境工程学院,副教授(冯妍卉教授团队)

6. 2016年8月-9月,新加坡南洋理工大学电气与电子工程学院,访问学者(合作导师: Beng kang Tay教授)

7. 2017年8月,英国利兹大学化学与过程工程学院,访问学者(合作导师: Dongsheng Wen教授)

8. 2021年7月至今,北京科技大学能源与环境工程学院,教授(冯妍卉教授团队)


研究领域:

1.  先进材料热物理性质评价方法及机理研究:包括隔热、热障涂层、薄膜材料、复合材料、纳米材料等的热输运测量技术(3ω技术、Raman技术、SThM技术)、数值模拟开发及微观机理解析等;

2.  热管理用纳米碳材料研发:碳纤维、碳纳米管及由其组装成的复合材料的热、电性能表征,基于碳纳米管阵列、纤维的热管理器件设计及开发;

3.  相变蓄热新应用:相变微胶囊传蓄热表征,热存储及释放过程数值模拟,高温蓄热用金属基相变材料微胶囊化开发。


获奖:

1. 2022年,国家优秀青年科学基金获得者

2. 2020年,入选“北京市科技新星计划”

3. 2022年,入选“能源与环境青年人才培养计划”

4. 2020年,北京科技大学优秀硕士学位论文指导教师

5. 2021年,北京科技大学优秀硕士学位论文指导教师

6. 2021年,“有色金属智库杯”冶金优秀青年支撑计划三等奖

7. 2021年, Engineered Science Publisher“Best Paper Award”


研究生培养:

已毕业国内硕士生7名,其中4名获得研究生国家奖学金,2名获得北京市优秀毕业生,3名获得北京科技大学优秀毕业研究生,3名获得北京科技大学优秀硕士学位论文称号。


本科生课程:

1. 热工学

2. Fundamentals of Thermal Engineering


研究生课程:

1. 材料热物性及导热分析


学术任职:

1. 期刊副主编:Review of Scientific Instruments

2. 期刊编委: Scientific Reports、Carbon、Applied Thermal Engineering

3. 客座编辑: Energy、Journal of Building Engineering、Journal of Thermal Science、Applied Sciences、Materials

4. 分会主席:The 8th Asian Symposium on Computational Heat Transfer and Fluid Flow-2021

5. 第7届国际微纳技术会议学术委员会委员(2019/4/26-27)

6. 中国高等教育学会工程热物理专业委员会理事

7. 北京热物理与能源工程学会青年工作委员会委员

8. 国家自然科学基金通信评审专家

9. 中国博士后科学基金评审专家

10. 天合科技成果市场转化成熟度评价系统评价师

11. “中国钢铁工业协会低碳工作推进委员会”专家库成员


教学项目:

1. 北京科技大学研究生教育教材建设项目, “《材料热物性及导热分析》讲义”, 1万, 2022.3-2023.12(主持)

2. 北京科技大学研究生教育教学改革项目, “研究生《材料热物性及导热分析》课程改革与探索”(No. 2022JGC029), 2万, 2021.10-2023.10(主持)

3. 北京科技大学规划教材(讲义)项目, “Fundamentals of Thermal Engineering” (No. JC2022YB013), 3万, 2022.4-2024.6(主持)

4. 2021年高等学校能源动力类教学研究与实践项目一般项目, “热工学课程学研用协同育人教学模式探索” (No. NSJZW2021Y-90), 2022.2-2024.1(主持)

5. 北京科技大学国际学生全英文授课课程建设项目, “热工基础” (No. GYW2021023), 5万, 2021.9-2023.7(主持)

6. 北京科技大学全英文教学示范课程建设项目, “热工学” (No. KC2020QYW03), 3万, 2020.9-2022.7(主持)

7. 北京科技大学本科教育教学改革与研究面上项目, “机械专业热工学课程产学研用协同育人教学模式探索” (No. JG2018M17), 2万, 2018.7-2020.7(主持)

8. 北京科技大学课程思政特色示范课程建设项目, “热工学” (No. KC2021SZ34), 1万, 2021.4-2022.5(参与, 承担0.1万)


科研项目:

1.   北京科技大学青年教师学科交叉研究滚动项目, “高导热sp2-sp3杂化界面结构热输运机制研究” (No. FRF-IDRY-GD21-004), 20万, 2022.1.1-2023.12.31(主持)

2.   国家级外专项目, “中低温陶瓷基复合相变材料热测量和热输运机理” (No. G2021105022L), 30万, 2021.1.1-2022.12.31(主持)

3.   北京科技大学青年教师国际交流成长计划项目, “中高温陶瓷基复合相变材料热测量和热输运机理” (No. QNXM20210032), 8万, 2021.5.14-2021.12.31(主持)

4.   北京市科技新星计划项目, “基于柔性探测器的皮肤体征热物性监测及健康诊疗” (No. Z201100006820065), 40万, 2020.9.1-2023.8.31(主持)

5.   北京科技大学青年教师学科交叉研究培育项目, “超高导热金刚石/石墨烯复合材料界面热输运性能研究” (No. FRF-IDRY-19-004), 10万, 2020.1.1-2020.12.31(主持)

6.   北京市自然科学基金面上项目, “超高导热碳纳米管/石墨烯组装膜材料研究” (No. 3202020), 20万, 2020.1.1-2022.12.31(主持)

7.   国家自然科学基金面上项目, “纤维形状记忆复合材料热增强的界面调控” (No. 51876008), 62万, 2019.1.1-2022.12.31(主持)

8.   国家重点研发计划子课题, “基于CFD-DEM的移动床气固两相流动换热机理研究” (No. 2017YFB0603603), 90万, 2017.7.1-2020.6.30(主持)

9. 北京科技大学高水平拔尖人才引进计划, “导热可控的碳纳米管微纳热管理器件效能优化”, 30万, 2016.7.1-2019.6.30(主持)

10. 国家自然科学基金青年项目, “纳米颗粒/碳纳米管复合纤维的热输运机理研究” (No. 51306183), 25万, 2014.1.1-2016.12.31(主持)

11. 横向项目, “中关村科技园区发展专项资金”, 50万, 2014.1.1-2015.6.30(主持)

12. 横向项目, “热物性测试服务及仪器开发项目”, 157.6408万, 2012.9.1-2023.2.7(主持)

13. 横向项目, “华为有限公司委托”, 149.35万, 2022.5.7-2023.8.6(主持)

14. 横向项目, “先进能源科学与技术广东省实验室委托”, 30万, 2022.6.21-2022.12.31(主持)

15. 国家重点研发计划课题, “等级孔及复合结构声子波传递机理及协同调控强化方法” (No. 2018YFA0702302), 257万, 2019.9.1-2024.8.31(参与, 承担¥70万)

16. 北京市科学技术委员会, “2018年度科技创新基地培育与发展工程专项实施方案”, 100万, 2018.9 -2020.3(参与, 承担¥3万)

17. 横向项目—航天材料及工艺研究所, “复合相变材料热物性仿真优化分析”, 40万, 2018.8 -2019.12(参与, 承担¥10万)

18. 国家自然科学基金重点项目, “飞秒、纳米时/空尺度热输运机理研究” (No. 51336009), 300万, 2014.1.1-2018.12.31(参与, 承担¥40万)

19. 国家重大科学研究计划(973)课题, “微纳米材料结构、热传递表征新方法及传热基本规律” (No. 2012CB933204), 579万, 2011.9.1-2015.8.31.(参与, 承担¥40万)

20. 国家重大科学研究计划(973)子课题, “相变微胶囊传蓄热研究”, 56万, 2012.1.1-2013.12.31(参与, 承担8万)

21. 国家自然科学基金面上项目, “导热增强相变温控复合系统效能优化研究” (No. 51576192), 76.8万, 2016.1.1-2019.12.31(参与, 承担5万)

22. 横向项目—中国航空工业集团公司, “大功率T/R芯片强化散热技术研究”, 100万, 2014.1.1-2016.12.31(参与, 承担5万)

23. 中国科学院仪器设备功能开发技术创新项目, “具有独立探测器的谐波探测技术可移植化研究” (No. yg2012022), 30万, 2012.9.1-2014.8.31(副组长, 承担5万)

24. 横向项目—航天材料及工艺研究所, ¥160万, “相变温控复合材料性能匹配及温控效能优化”, 2012.1.1-2014.12.31(参与, 承担5万)

25. 863计划, “ ××导热技术”, ¥65万, 2012.7.1-2013.12.31(参与, 承担5万)

26. 英国皇家化学会(RS)国际交流项目, “Engineered nanoparticle-carbon nanotube fibres with programmable properties”, £12,000, 2016.3.1-2018.2.28(海外合作申请者)


专利:

1. 邱琳,郑兴华,李大庆,唐大伟. “双螺旋平面结构谐波法测试材料热物性参数的装置”. 发明专利, 中国, ZL 201410078886.1, 2016年6月1日授权

2. 邱琳, 郑兴华, 徐先锋, 李兰兰, 唐大伟. “测试材料热物性参数的装置及方法”. 发明专利, 中国, ZL 201310032893.3, 2016年2月24日授权

3. 邱琳, 徐先锋, 唐大伟, 祝捷, 布文峰. “测量固体热物性参数的光学系统及方法”. 发明专利, 中国, ZL 201210476747.5, 2014年8月20日授权

4. 邱琳, 郑兴华, 唐大伟. “用于吸热系数测量的测量装置及测量方法”. 发明专利, 中国, ZL 201210258346.2, 2014年4月9日授权

5. 邱琳, 冯妍卉, 张欣欣, 张真, 邹瀚影. “制备高纯度高导热碳纳米管阵列热界面材料的方法及装置”. 发明专利, 中国, ZL 201611126343.8, 2018年6月1日授权

6. 邱琳, 唐大伟, 冯妍卉, 张欣欣. “节能隔热材料热导率现场精确测试的装置及方法”. 发明专利, 中国, ZL 201610580315.7, 2018年9月14日授权

7. 邱琳, 闫可宁, 冯妍卉, 张欣欣. “一种测量宽温域材料热导率的装置及方法”. 发明专利, 中国, ZL 202110134103.7, 2021年10月22日授权

8. 郑兴华, 邱琳, 唐大伟. “基于独立型传感器的谐波法测量材料蓄热系数装置及方法”. 发明专利, 中国, ZL 201110138899.X, 2013年2月13日授权

9. 郑兴华, 邱琳, 苏国萍, 唐大伟. “谐波法单根导电丝状材料热物性测试方法及装置”. 发明专利, 中国, ZL 201010141035.9, 2012年10月31日授权

10. 郑兴华, 邱琳, 苏国萍, 唐大伟. “谐波法微/纳米薄膜热物性测试方法”. 发明专利, 中国, ZL 201010218390.1, 2012年6月27日授权

11. 郑兴华, 邱琳, 唐大伟. “具有独立探头的谐波法固体材料热物性测试方法及装置”. 发明专利, 中国, ZL 200910242362.0, 2011年10月5日授权

12. 郑兴华, 岳鹏, 李玉华, 邱琳, 唐大伟. “抗重力型螺旋盘管式非相变取热装置”. 发明专利, 中国, ZL 201410194345.5, 2017年8月25日授权

13. 郑兴华, 苏国萍, 唐大伟, 邱琳. “用于各向异性材料导热系数和热扩散率的测定方法”. 发明专利, 中国, ZL 201010201486.7, 2013年5月8日授权

14. 邱琳,欧阳裕新,冯妍卉,张欣欣. “一种材料三维各向异性热导率无损测量装置” . 实用新型专利, 中国, ZL 20181692160.7, 2019年5月31日授权

15. 邱琳, 冯妍卉, 张欣欣, 张真, 邹瀚影. “一种高纯度高导热碳纳米管阵列热界面材料制备装置”. 实用新型专利, 中国, ZL 201621345714.7, 2017年6月27日授权

16. 邱琳, 郑兴华, 唐大伟. “贴面式传感器及测量装置”. 实用新型专利, 中国, ZL 201220360421.1, 2013年2月13日授权

17. 郑兴华, 邱琳, 唐大伟. “具有独立探头的谐波法固体材料热物性测试装置”. 实用新型专利, 中国, ZL 200920277780.9, 2010年7月28日授权

18. 郑兴华, 岳鹏, 李玉华, 邱琳, 唐大伟. “抗重力型螺旋盘管式非相变取热装置”. 实用新型专利, 中国, ZL 201420237565.7, 2014年9月24日授权


软件著作权:

[1]  邱琳, 王刚, 郑兴华, 唐大伟 (2014). “流体及粉体热物性参数测量软件(版本号: 1.0.0)”. 计算机软件著作权, 中国, 登记号: 2014R11S010727, 证书号:软著登字第0697571号, 3月10日登记


代表性论文及著作:

教材:

1.传热传质学英文教材《Heat and Mass Transfer: Fundamentals & Applications》,高等教育出版社,2020年6月(参编)

2.十一五国家级规划教材《热能与动力工程专业实习教程》,机械工业出版社,2010年6月(参编)


著作:

1. Lin Qiu, Yanhui Feng, Micro and Nano Thermal Transport: Characterization, Measurement, and Mechanism, Academic Press, London, 2022, ISBN: 9780128235393.

2. Lin Qiu, Xinghua Zheng, Meng Liu, Peng Yue, Dawei Tang, “Chapter 4: Heat Conduction and Heat Storage Characterizations of Phase-Change Microcapsules.” Phase Change Materials: Characteristics, Industrial Applications and Energy Implications, Nova Science Publisher, New York, pp. 103-120, 2015, ISBN: 978-1-63482-702-7.

3. 郑兴华, 祝捷, 邱琳, 唐大伟. “第2章: 微纳结构材料的热物理性能表征.” 热能调控微纳结构材料, 科学出版社, 北京, pp. 24-87, 2014, ISBN: 978-7-03-041001-6.


教学论文:

1. 邱琳, 陈文璨, 冯妍卉, 尹少武, 张欣欣. 机械专业热工学课程产学研用协同育人模式的探索. 高等工程教育研究, 2019, S1, 276-279. (CSSCI)


科研论文:

[1]    Lin Qiu, Ning Zhu, Yanhui Feng*, Efstathios E. Michaelides, Gaweł Żyła, Dengwei Jing, Xinxin Zhang, Pamela M. Norris, Christos N. Markides, Omid Mahian*. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Physics Reports-Review Section of Physics Letters, 2020, 843, 1-81. [Full Text Link] (SCI, ESI热点&高被引论文, IF=25.809)

[2]    Lin Qiu, Xiaohua Zhang*, Zhixin Guo, Qingwen Li. Interfacial heat transport in nano-carbon assemblies. Carbon, 2021, 178, 391-412. [Full Text Link] (SCI, IF=8.821)

[3]    Lin Qiu, Pu Guo, Qinyu Kong, Chong Wei Tan, Kun Liang, Jun Wei, Ju Nie Tey, Yanhui Feng*, Xinxin Zhang, Beng Kang Tay*. Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon, 2019, 145, 725-733. [Full Text Link] (SCI, IF=8.821)

[4]    Lin Qiu, Pu Guo, Xueqin Yang, Yuxin Ouyang, Yanhui Feng*, Xinxin Zhang, Jingna Zhao, Xiaohua Zhang*, Qingwen Li. Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon, 2019, 145, 650-657. [Full Text Link] (SCI, IF=8.821)

[5]    Lin Qiu, Hanying Zou, Xiaotian Wang, Yanhui Feng*, Xinxin Zhang, Jingna Zhao, Xiaohua Zhang*, Qingwen Li. Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon, 2019, 141, 497-505. [Full Text Link] (SCI, ESI高被引论文, IF=8.821)

[6]    Lin Qiu, Kimberly Scheider, Suhaib Abu Radwan, LeighAnn Sarah Larkin, Christopher Blair Saltonstall, Yanhui Feng*, Xinxin Zhang, Pamela M. Norris*. Thermal transport barrier in carbon nanotube array nano-thermal interface materials. Carbon, 2017, 120, 128-136. [Full Text Link] (SCI, IF=8.821)

[7]    Lin Qiu, Xiaotian Wang, Dawei Tang*, Xinghua Zheng*, Pamela M. Norris, Dongsheng Wen, Jingna Zhao, Xiaohua Zhang, Qingwen Li. Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers. Carbon, 2016, 105, 248-259. [Full Text Link] (SCI, IF=8.821)

[8]    Lin Qiu, Xinghua Zheng*, Jie Zhu, Guoping Su, Dawei Tang. The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber. Carbon, 2013, 51, 265-273. [Full Text Link] (SCI, IF=8.821)

[9]    Lin Qiu*, Kening Yan, Yanhui Feng*, Xianglei Liu, Xinxin Zhang. Bionic hierarchical porous aluminum nitride ceramic composite phase change material with excellent heat transfer and storage performance. Composites Communications, 2021, 27, 100892. [Full Text Link] (SCI, IF=6.617)

[10]Lin Qiu, Yuxin Ouyang, Yanhui Feng*, Xinxin Zhang. Review on micro/nano phase change materials for solar thermal applications. Renewable Energy, 2019, 140, 513-538. [Full Text Link] (SCI, ESI热点&高被引论文, IF=6.274)

[11]Lin Qiu, Yanli Li, Yanhui Feng*, Zegui Chen, Xinxin Zhang. Three-dimensional fluid-solid coupling heat transfer simulation based on multireference frame for side-blown aluminum annealing furnace. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1), 1036-1048. [Full Text Link] (SCI, IF=5.8)

[12]Lin Qiu*, Sida Wang, Ziyang Wang, Yuhao Ma, Yanhui Feng*. Conformal sensor-based harmonic wave technique for in-vivo non-invasive monitoring skin water content. International Journal of Heat and Mass Transfer, 2022, 197, 123328. [Full Text Link] (SCI, IF=4.947)

[13]Lin Qiu*, Fengcheng Li*, Ning Zhu, Yanhui Feng*, Xinxin Zhang, Xiaohua Zhang*. Elaborate manipulation on CNT intertube heat transport by using a polymer knob. International Journal of Heat and Mass Transfer, 2022, 184, 122280. [Full Text Link] (SCI, IF=4.947)

[14] Lin Qiu*, Yuxin Ouyang, Yanhui Feng*, Xinxin Zhang, Xiaotian Wang*. In vivo skin thermophysical property testing technology using flexible thermosensor-based 3ω method. International Journal of Heat and Mass Transfer, 2020, 163, 120550. [Full Text Link] (SCI, IF=4.947)

[15] Lin Qiu*, Ning Zhu, Yanhui Feng*, Xinxin Zhang, Xiaotian Wang*. Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites. International Journal of Heat and Mass Transfer, 2020, 152, 119565. [Full Text Link] (SCI, IF=4.947)

[16] Lin Qiu, Ning Zhu, Hanying Zou, Yanhui Feng*, Xinxin Zhang, Dawei Tang*. Advances in thermal transport properties at nanoscale in China. International Journal of Heat and Mass Transfer, 2018, 125, 413-433. [Full Text Link] (SCI, IF=4.947)

[17] Lin Qiu*, Dawei Sang, Yanli Li, Yanhui Feng*, Xinxin Zhang. Numerical simulation of gas-solid heat transfer characteristics of porous structure composed of high-temperature particles in moving bed. Applied Thermal Engineering, 2020, 181, 115925. [Full Text Link] (SCI, IF=4.725)

[18] Lin Qiu, Hanying Zou, Dawei Tang, Dongsheng Wen, Yanhui Feng*, Xinxin Zhang. Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Applied Thermal Engineering, 2018, 130, 1004-1011. [Full Text Link] (SCI, IF =4.725)

[19] Lin Qiu, Hanying Zou, Ning Zhu, Yanhui Feng*, Xiaoliang Zhang, Xinxin Zhang. Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers. Applied Thermal Engineering, 2018, 141, 913-920. [Full Text Link] (SCI, IF =4.725)

[20] Lin Qiu, Yanhui Feng*, Zegui Chen, Yanli Li, Xinxin Zhang. Numerical simulation and optimization of the melting process for the regenerative aluminum melting furnace. Applied Thermal Engineering, 2018, 145, 315-327. [Full Text Link] (SCI, IF =4.725)

[21]Lin Qiu*, Dawei Sang, Yanhui Feng*, Xinxin Zhang. Experimental study on particle flow characteristics of three-dimensional moving bed. Powder Technology, 2020, 374, 399-408. [Full Text Link] (SCI, IF=4.142)

[22] Lin Qiu, Fengcheng Li, Ning Zhu, Yanhui Feng*, Xiaoliang Zhang*, Xiaohua Zhang*. Broad low-frequency phonon resonance for increased across-tube heat transport. Physical Review B, 2022, 105(16), 165406. [Full Text Link] (SCI, IF=4.036)

[23] Lin Qiu#, Xiaotian Wang#, Guoping Su, Dawei Tang*, Xinghua Zheng*, Jie Zhu, Zhiguo Wang, Pamela M. Norris, Philip D. Bradford, Yuntian Zhu. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film. Scientific Reports, 2016, 6, 21014. [Full Text Link] (SCI, IF=3.998)

[24] Lin Qiu, Dawei Sang, Yanhui Feng*, Haoyan Huang, Xinxin Zhang. Study on heat transfer of process intensification in moving bed reactor based on the discrete element method. Chemical Engineering and Processing - Process Intensification, 2020, 151, 107915. [Full Text Link] (SCI, IF=3.731)

[25] Lin Qiu, Yuxin Ouyang, Yanhui Feng*, Xinxin Zhang, Xiaotian Wang*, Jin Wu*. Thermal barrier effect from internal pore channels on thickened aluminum nanofilm. International Journal of Thermal Sciences, 2021, 162, 106781. [Full Text Link] (SCI, IF=3.476)

[26]Lin Qiu, Xinghua Zheng*, Peng Yue, Jie Zhu, Dawei Tang*, Yajun Dong, Yuelian Peng. Adaptable thermal conductivity characterization of microporous membranes based on freestanding sensor-based 3ω technique. International Journal of Thermal Sciences, 2015, 89(3), 185-192. [Full Text Link] (SCI, IF=3.476)

[27] Lin Qiu, Yanbo Du, Yangyang Bai, Yanhui Feng*, Xinxin Zhang, Jin Wu*, Xiaotian Wang, Caihong Xu. Experimental characterization and model verification of thermal conductivity from mesoporous to macroporous SiOC ceramics. Journal of Thermal Science, 2021, 30(2), 465-476. [Full Text Link] (SCI, IF=1.972)

[28]Lin Qiu, Yuxin Ouyang, Yanhui Feng*, Xinxin Zhang. Note: Thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3ω method. Review of Scientific Instruments, 2018, 89(9), 096112. [Full Text Link] (SCI, IF=1.48)

[29] Lin Qiu, Dawei Tang*, Xinghua Zheng, Guoping Su. The freestanding sensor-based 3ω technique for measuring thermal conductivity of solids: principle and examination. Review of Scientific Instruments, 2011, 82(4), 045106. [Full Text Link] (SCI, IF=1.48)

[30] Lin Qiu, Xinghua Zheng, Jie Zhu, Dawei Tang*. Note: Non-destructive measurement of thermal effusivity of a solid and liquid using a freestanding serpentine sensor-based 3ω technique. Review of Scientific Instruments, 2011, 82(8), 086110. [Full Text Link] (SCI, IF=1.48)

[31] Lin Qiu*, Yuhao Ma, Yuxin Ouyang, Yanhui Feng, Xinxin Zhang. Freestanding flexible sensor based on 3ω technique for anisotropic thermal conductivity measurement of potassium dihydrogen phosphate crystal. Sensors, 2021, 21(23), 7968. [Full Text Link] (SCI, IF=3.576)

[32] Lin Qiu, Xinghua Zheng*, Jie Zhu, Dawei Tang, Shiyong Yang, Aijun Hu, Leilei Wang, Shishi Li. Thermal transport in high-strength polymethacrylimide (PMI) foam insulations. International Journal of Thermophysics, 2015, 36(10), 2523-2534. [Full Text Link] (SCI, IF=0.794)

[33] Lin Qiu, Yongming Li, Xinghua Zheng*, Jie Zhu, Dawei Tang, Jiquan Wu, Caihong Xu. Thermal-conductivity studies of macro-porous polymer-derived SiOC ceramics. International Journal of Thermophysics, 2014, 35(1), 76-89. [Full Text Link] (SCI, IF=0.794)

[34]Lin Qiu, Xinghua Zheng, Guoping Su, Dawei Tang*. Design and application of a freestanding sensor based on 3ω technique for thermal conductivity measurement of solids, liquids and nanopowders. International Journal of Thermophysics, 2013, 34(12), 2261-2275. [Full Text Link] (SCI, IF=0.794)

[35]Yuxin Ouyang#, Lin Qiu#*, Yangyang Bai, Wei Yu, Yanhui Feng*. Synergistical thermal modulation function of 2D Ti3C2 MXene composite nanosheets via interfacial structure modification. iScience, 2022, 25(8), 104825. [Full Text Link] (SCI, IF=6.107)

[36]Qinyu Kong, Lin Qiu*, Yu Dian Lim, Chong Wei Tan, Kun Liang, Congxiang Lu, Beng Kang Tay*. Thermal conductivity characterization of three dimensional carbon nanotube network using freestanding sensor-based 3ω technique. Surface & Coatings Technology, 2018, 345, 105-112. [Full Text Link] (SCI, IF=3.784)

[37]Meng Liu, Lin Qiu*, Xinghua Zheng*, Jie Zhu, Dawei Tang. Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation. Journal of Applied Physics, 2014, 116(9), 093503. [Full Text Link] (SCI, IF=2.286)

[38]Guoping Su, Lin Qiu*, Xinghua Zheng*, Zhuohao Xiao, Dawei Tang. Effective thermal conductivity measurement on germanate glass-ceramics employing the 3ω method in high temperature. International Journal of Thermophysics, 2014, 35(2), 336-345. [Full Text Link] (SCI, IF=0.794)

[39]Wei Chen, Lin Qiu*, Shiqiang Liang*, Xinghua Zheng, Dawei Tang. Measurement of thermal conductivities of DMP/CH3OH and DMP/H2O by freestanding sensor-based 3ω technique. Thermochimica Acta, 2013, 560, 1-6. [Full Text Link] (SCI, IF=2.762)

[40]Xinghua Zheng, Lin Qiu*, Peng Yue, Gang Wang, Dawei Tang. 3ω slope comparative method for fluid and powder thermal conductivity measurements. Modern Physics Letters B, 2016, 30(25), 1650322. [Full Text Link] (SCI, IF=1.224)

[41] Xiaoxin Yan, Haibo Zhao, Yanhui Feng*, Lin Qiu*, Lin Lin, Xinxin Zhang, Taku Ohara. Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials. Composite Part B: Engineering, 2022, 228, 109435. [Full Text Link] (SCI, IF=9.078)

[42] Xiaoxin Yan, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Thermal conductivity and phase change characteristics of hierarchical porous diamond/erythritol composite phase change materials. Energy, 2021, 233, 121158. [Full Text Link] (SCI, IF=6.082)

[43]Yanhui Feng*, Zhen Zhang, Lin Qiu*, Xinxin Zhang. Heat recovery process modelling of semi-molten blast furnace slag in a moving bed using XDEM. Energy, 2019, 186, 115876. [Full Text Link] (SCI, IF=6.082)

[44] Hanying Zou, Yanhui Feng*, Lin Qiu*. Excellent heat transfer enhancement of CNT-metal interface by loading carbyne and metal nanowire into CNT. International Journal of Heat and Mass Transfer, 2022, 186, 122533. [Full Text Link] (SCI, IF=4.947)

[45] Hanying Zou, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Thermal conductance control of non-bonded interaction between loaded halogen molecules and carbon nanotubes: A molecular dynamics study. International Journal of Heat and Mass Transfer, 2022, 183, 122216. [Full Text Link] (SCI, IF=4.947)

[46] Wencan Chen, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Scanning thermal microscopy method for thermal conductivity. International Journal of Heat and Mass Transfer, 2020, 154, 119750. [Full Text Link] (SCI, IF=4.947)

[47]Zihan Liu, Yanhui Feng*, Lin Qiu*. Near-field radiation analysis and thermal contact radius determination in the thermal conductivity measurement based on SThM open-loop system. Applied Physics Letters, 2022, 120(12), 113506. [Full Text Link] (SCI, IF=3.791)

[48]Guangpeng Feng, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Pore scale simulation for melting of composite phase change materials considering interfacial thermal resistance. Applied Thermal Engineering, 2022, 212, 118624. [Full Text Link] (SCI, IF=4.725)

[49]Guangpeng Feng, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Evaluation of thermal performance for bionic porous ceramic phase change material using micro-computed tomography and lattice Boltzmann method. International Journal of Thermal Sciences, 2022, 179, 107621. [Full Text Link] (SCI, IF=3.744)

[50]Hanying Zou, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Effect of the loading amount and arrangement of iodine chains on the interfacial thermal transport of carbon nanotubes: a molecular dynamics study. RSC Advances, 2020, 10(72), 44196-44204. [Full Text Link] (SCI, IF=3.119)

[51]Yanhui Feng*, Hanying Zou, Lin Qiu*, Xinxin Zhang. Size effect on the thermal conductivity of octadecanoic acid: A molecular dynamics study. Computational Materials Science, 2019, 158, 14-19. [Full Text Link] (SCI, IF=2.863)

[52] Peng Han, Xinghua Zheng*, Wenshuo Hou, Lin Qiu*, Dawei Tang. Study on heat storage and release characteristics of multi-cavity structured phase change microcapsules. Phase Transitions, 2015, 88(7), 704-715. [Full Text Link] (SCI, IF=1.004)

[53] Quang N. Pham, LeighAnn S. Larkin, Carina C. Lisboa, Christopher B. Saltonstall, Lin Qiu*, Jennifer D. Schuler, Timothy J. Rupert, Pamela M. Norris. Effect of growth temperature on the synthesis of carbon nanotube arrays and amorphous carbon for thermal applications. Physica Status Solidi A-Applications and Materials Science, 2017, 214(7), 1600852. [Full Text Link] (SCI, IF=1.759)

[54] Jian Yu#, Chao Chen#, Jie Lin*, Xiangyu Meng, Lin Qiu*, Xiaotian Wang*. Amorphous Co(OH)2 nanocages achieving efficient photo-induced charge transfer for significant SERS activity, Journal of Materials Chemistry C, 2022, 10, 1632. [Full Text Link] (SCI, IF= 7.393)

[55] Jian Yu, Jie Lin*, Mo Chen, Xiangyu Meng, Lin Qiu*, Jin Wu*, Guangcheng Xi, Xiaotian Wang*. Amorphous Ni(OH)2 nanocages as efficient SERS substrates for selective recognition in mixtures, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127652. [Full Text Link] (SCI, IF=4.539)

[56] Yanhui Feng*, Zhen Zhang, Jie Gao, Guangpeng Feng, Lin Qiu*, Daili Feng, Xinxin Zhang, Xun Zhu. Research status of centrifugal granulation, physical heat recovery and resource utilization of blast furnace slags. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105220. [Full Text Link] (SCI, IF=3.905)

[57] Hanying Zou, Cheng Chen, Muxi Zha, Kangneng Zhou, Ruoxiu Xiao, Yanhui Feng*, Lin Qiu*, Zhiliang Wang. A neural regression model for predicting thermal conductivity of CNT nanofluids with multiple base fluids. Journal of Thermal Science, 2021, 30, 1908-1916. [Full Text Link] (SCI, IF=1.972)

[58] Jin Wu*, Zixuan Wu, Haojun Ding, Yaoming Wei, Wenxi Huang, Xing Yang, Zhenyi Li, Lin Qiu*, Xiaotian Wang*. Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Applied Materials & Interfaces, 2020, 12(2), 2634-2643. [Full Text Link] (SCI, IF=8.758)

[59] Jin Wu*, Zixuan Wu, Haojun Ding, Yaoming Wei, Xing Yang, Zhenyi Li, Boru Yang, Chuan Liu, Lin Qiu*, Xiaotian Wang*. Multifunctional and high-sensitive sensor capable of detecting humidity, temperature, and flow stimuli using an integrated microheater. ACS Applied Materials & Interfaces, 2019, 11(46), 43383-43392. [Full Text Link] (SCI, IF=8.758)

[60] Jin Wu*, Zixuan Wu, Haojun Ding, Yaoming Wei, Wenxi Huang, Xing Yang, Zhenyi Li, Lin Qiu*, Xiaotian Wang*. Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sensors and Actuators B: Chemical, 2020, 305, 127445. [Full Text Link] (SCI, ESI高被引论文, IF=7.1)

[61] Jin Wu*, Zixuan Wu, Haojun Ding, Xing Yang, Yaoming Wei, Mingquan Xiao, Ziqi Yang, Bo-Ru Yang, Chuan Liu, Xing Lu, Lin Qiu*, Xiaotian Wang*. Three-dimensional-structured Boron- and Nitrogen-doped graphene hydrogel enabling high-sensitivity NO2 detection at room temperature. ACS Sensors, 2019, 4(7), 1889-1898. [Full Text Link] (SCI, IF=7.333)

[62] Yuanhui Sun, Lin Qiu, Liangpo Tang, Hua Geng, Hanfu Wang, Fengjiao Zhang, Dazhen Huang, Wei Xu*, Peng Yue, Ying-shi Guan, Fei Jiao, Yimeng Sun, Dawei Tang, Chong-an Di, Yuanping Yi*, Daoben Zhu*. Flexible n-type high-performance thermoelectric thin films of poly(nickle-ethylenetetrathiolate) prepared by an electrochemical method. Advanced Materials, 2016, 28(17), 3351-3358. [Full Text Link] (SCI, IF=27.398)

[63] Jiaojiao Wang, Jingna Zhao, Lin Qiu, Fengcheng Li, Changle Xu, Kunjie Wu, Pengfei Wang, Xiaohua Zhang*, Qingwen Li*. Shampoo assisted aligning of carbon nanotubes toward strong, stiff and conductive fibers. RSC Advances, 2020, 10, 18715. [Full Text Link] (SCI, IF=3.119)

[64] Daili Feng, Yanhui Feng*, Lin Qiu, Pei Li, Yuyang Zang, Hanying Zou, Zepei Yu, Xinxin Zhang. Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation. Renewable and Sustainable Energy Reviews, 2019, 109, 578-605. [Full Text Link] (SCI, IF=12.11)

[65]Xinghua Zheng*, Lin Qiu, Guoping Su, Dawei Tang, Yuchao Liao, Yunfa Chen. Thermal conductivity and thermal diffusivity of SiO2 nanopowder. Journal of Nanoparticle Research, 2011, 13(12), 6887-6893. [Full Text Link] (SCI, IF=2.132)

[66]Cheng Chen, Mingan Yu, Lin Qiu, Hongyu Chen, Zhenlong Zhao, Jie Wu, Lili Peng, Zhiliang Wang, Ruoxiu Xiao*, Theoretical evaluation of microwave ablation applied on muscle, fat and bone: A numerical study. Applied Sciences, 2021, 11(17), 8271. [Full Text Link] (SCI, IF=2.679)

[67]Guoping Su, Xinghua Zheng*, Lin Qiu, Dawei Tang*, Jie Zhu. Measurement of thermal conductivity of anisotropic SiC crystal. International Journal of Thermophysics, 2013, 34(12), 2334-2342. [Full Text Link] (SCI, IF=0.794)

[68]Gangtao Zhao*, Xiaohui Xu, Lin Qiu, Xinghua Zheng, Dawei Tang. Study on the heat conduction of phase-change material microcapsules. Journal of Thermal Science, 2013, 22(3), 257-260. [Full Text Link] (SCI, IF=1.972)

[69]Jiajia Zhang, Guangjie Song, Lin Qiu, Yanhui Feng, Jie Chen, Jie Yan, Liyao Liu, Xing Huang, Yutao Cui, Yimeng Sun, Wei Xu*, Daoben Zhu*. Highly conducting polythiophene thin films with less ordered microstructure displaying excellent thermoelectric performance. Macromolecular Rapid Communications, 2018, 39(13), 1800283. [Full Text Link] (SCI, IF=4.886)

[70]Yanhui Feng*, Daili Feng, Fuqiang Chu, Lin Qiu, Fangyuan Sun, Lin Lin, Xinxin Zhang. Thermal design frontiers of nano-assembled phase change materials for heat storage. Acta Physica Sinica, 2022, 71(1), 016501. [Full Text Link] (SCI, IF=0.819)

[71]Zhehao Li*, Yuelian Peng*, Yajun Dong, Hongwei Fan, Ping Chen, Lin Qiu, Qi Jiang. Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity. Applied Surface Science, 2014, 317(30), 338-349. [Full Text Link] (SCI, IF=6.182)

[72]Peng Yue, Lin Qiu*, Xinghua Zheng, Dawei Tang. The effective thermal conductivity of porous polymethacrylimide foams. Key Engineering Materials, 2014, 609-610, 196-200. [Full Text Link] (EI)

[73]邱琳, 李艳丽, 冯妍卉*, 张欣欣. 多粒径高炉渣在移动床内余热回收的数值模拟. 工程热物理学报, 2019, 40(10), 2407-2414. [Full Text Link] (EI)

[74]邱琳, 郭璞, 冯妍卉*, 张欣欣. 纳米涂层增强碳纳米管阵列界面热输运. 工程热物理学报, 2019, 40(9), 2109-2114. [Full Text Link] (EI)

[75]邱琳, 桑大伟, 冯妍卉*, 龚亦辉, 张欣欣. 高炉熔渣流化床余热回收的优化分析. 工程热物理学报, 2019, 40(5), 1086-1094. [Full Text Link] (EI)

[76] 邱琳, 桑大伟, 冯妍卉*, 杨安, 张欣欣. 漏斗形移动床内颗粒运动特性分析. 工程热物理学报, 2018, 39(12), 2708-2713. [Full Text Link] (EI)

[77] 邱琳, 郭璞, 邹瀚影, 冯妍卉*, 张欣欣, 张骁骅, 赵静娜, 李清文. 碳纳米管纤维的界面设计及热/电输运调控. 工程热物理学报, 2018, 39(6), 1344-1348. [Full Text Link] (EI)

[78] 邱琳, Kimberly Scheider, Suhaib Abu Radwan, LeighAnn Sarah Larkin, Christopher Blair Saltonstall, 冯妍卉*, 张欣欣,Pamela M. Norris. 面向热界面应用的多壁碳纳米管阵列生长优化. 工程热物理学报, 2017, 38(6), 1323-1327. [Full Text Link] (EI)

[79] 邱琳, 郑兴华*, 岳鹏, 唐大伟, 曹丽莉, 邓元. 碲化铋取向纳米柱状薄膜热导率测量. 工程热物理学报, 2015, 36(4), 816-819. [Full Text Link] (EI)

[80]邱琳, 郑兴华*, 唐大伟, 周文斌, 解思深. 碳纳米管纤维及薄膜的热导率和热扩散率研究. 工程热物理学报, 2014, 35(4), 718-721. [Full Text Link] (EI)

[81]邱琳, 郑兴华, 苏国萍, 唐大伟. 具有独立探头的3ω技术测量固体热导率. 工程热物理学报, 2011, 32(4), 621-624. [Full Text Link] (EI)

[82]邱琳, 郑兴华, 李谦, 唐大伟*, 钱杨保, 张伟刚. 陶瓷热障涂层的热导率和热扩散率测量. 功能材料, 2010, 41(S2), 264-267. [Full Text Link] (EI)

[83]曹运涛, 邱琳*, 郑兴华, 唐大伟, 朱群志, 裴振洪. 3ω微型探测器用于固体材料热导率的测量. 工程热物理学报, 2016, 37(4), 803-806. [Full Text Link] (EI)

[84]郑兴华,邱琳*, 李兰兰, 岳鹏, 王刚, 唐大伟. 相变微胶囊的吸热系数测量. 工程热物理学报, 2013, 34(9), 1692-1694. [Full Text Link] (EI)

[85]李峰诚, 原晓芦, 邱琳*, 刘金龙, 冯妍卉, 张欣欣. 金刚石衬底原位生长石墨烯的复合结构热输运. 工程热物理学报, 2021, 42(10), 2642-2648. [Full Text Link] (EI)

[86]陈文璨, 冯妍卉, 邱琳*, 张欣欣. 纳米颗粒热导率的扫描热显微镜方法研究. 工程热物理学报, 2020, 41(12), 3036-3040. [Full Text Link] (EI)

[87]闫晓鑫, 冯妍卉*, 邱琳*, 张欣欣. 赤藓糖醇/碳纳米管复合相变材料热特性模拟研究. 工程科学学报, 2022, 44(4), 722-729. [Full Text Link] (EI)

[88]郑兴华, 邱琳, 祝捷, 苏国萍, 唐大伟. 相变微胶囊的热导率测量. 工程热物理学报, 2012, 33(3), 454-456. [Full Text Link] (EI)

[89]郑兴华, 邱琳, 苏国萍, 唐大伟. 利用3ω法测量纳米SiO2粉末热导率及热扩散率. 工程热物理学报, 2011, 32(S1), 190-193. [Full Text Link] (EI)

[90]邹瀚影, 冯妍卉*, 邱琳, 张欣欣. 金纳米颗粒修饰碳纳米管热输运机制研究. 工程热物理学报, 2019, 40(7), 1637-1641. [Full Text Link] (EI)

[91]邹瀚影, 冯妍卉*, 邱琳, 张欣欣. 十八烷酸热传导机制的尺度效应研究. 化工学报, 2019, 70(S2), 155-160. [Full Text Link] (EI)

[92]苏国萍, 唐大伟, 郑兴华, 邱琳, 杜景龙. 3ω方法测量各向异性SiC晶体的导热系数. 工程热物理学报, 2011, 32(11), 1885-1888. [Full Text Link] (EI)


北京科技大学能源与环境工程学院
地址:北京市海淀区学院路30号| 邮编:100083| 联系电话:010-62333757
版权所有©北京科技大学   建设与技术支持:信息化建设与管理办公室   京公网安备:110402430062   京ICP备:13030111