您所在的位置:首页 - 师资队伍 - 教师检索

师资队伍

基本信息

姓名:王庆功

系所:热科学与能源工程系

职称:特聘教授

邮箱:wangqinggong@ustb.edu.cn

教育及工作经历
2025.01-至今,北京科技大学,特聘教授
2015.08-2025.01,中国空间技术研究院钱学森实验室,高级工程师/正研究员(岗位)
2011.08-2015.07,清华大学,热能工程系,博士
2013.11-2014.08,澳大利亚联邦科学与工业研究组织(CSIRO),国家公派联合培养博士生
2012.08-2012.10,芬兰VTT国家技术研究中心,清华大学公派访问学者
2009.08-2011.07,哈尔滨工业大学,能源科学与工程学院,硕士
2005.08-2009.07,哈尔滨工业大学,能源科学与工程学院,本科
研究领域
1.极端条件及跨尺度多相流动与传热传质理论。
2.空间热控、流体管理与地外资源开发利用技术。
3.热能工程余热回收利用与节能技术。
研究生培养
每年招收硕士研究生、博士研究生,并招聘博士后研究人员。
学术/社会兼职
[1]《宇航学报》《空间科学与技术试验学报》青年编委
[2]中国空间科学学会微重力科学与应用研究专业委员会青年委员
[3]中国宇航学会第一届空间科学与技术试验专业委员会青年委员
代表性论文及著作
[1]Wang Q, Yu Q, Du W, Fang Z, Li K, Wang Q*. Fluid distribution in a two-phase space accumulator predicted by a coupled multi-scale model based on single-domain approach. International Communications in Heat and Mass Transfer, 2025, 162: 108567.

[2]Long Q, Wang Q*, Mao Y, Gu J. Wang L, He Y. Thermal performance of a laser-diode end-pumped Nd: YVO4 slab crystal cooled by a pair of microchannel heat sinks. International Journal of Thermal Sciences, 2023, 194: 108547.

[3]Huo X, Li L, Yang Y, Liu X, Yu Q*, Wang Q*. The Dynamics of Directional Transport of a Droplet in Programmable Electrowetting Channel. Physics of Fluids, 35, 032105 (2023). (Featured article)

[4]Liu Y, Wang C, Pang Y, Wang Q*, Zhao Z, Lin T, Wang Z, Shen T, Liu S, Song J, Lai X, Quan X, Yao W*. Water extraction from icy lunar regolith by drilling-based thermal method in a pilot-scale unit. Acta Astronautica, 2023, 202: 386-399.

[5]Hu N, Wang Q*, Liu S, Gu J, Li L, Lyu J. A narrow shape double-layer microchannel heat sink (DL-MCHS) designed for high-power laser crystal. Applied Thermal Engineering, 2022: 118456.

[6]Liu S, Xie W, Wang Q*, Liu Y, Hu N. Thermal performance of a central-jetting microchannel heat sink designed for a high-power laser crystal. International Journal of Heat and Mass Transfer, 2022, 185: 122409.

[7]Wang Q*, Li L, Gu J, Zhang C, Lyu J, Yao W. Manipulation of a Nonconductive Droplet in an Aqueous Fluid with AC Electric Fields: Droplet Dewetting, Oscillation, and Detachment. Langmuir, 2021, 37(41): 12098-12111. (Front Cover)

[8]Weng N, Wang Q*, Gu J, Li J, Wang C, Yao W*. The dynamics of droplet detachment in reversed electrowetting (REW). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616: 126303.

[9]Wang Q*, Xu M, Wang C, Gu J, Hu N, Lyu J, Yao W. Actuation of a Nonconductive Droplet in an Aqueous Fluid by Reversed Electrowetting Effect. Langmuir, 2020, 36(28): 8152-8164. (Supplementary Cover)

[10]Weng N, Wang Q*, Li J, Lyu J, Zhang H, Yao W. Liquid penetration in metal wire mesh between parallel plates under normal gravity and microgravity conditions. Applied Thermal Engineering, 2020, 167: 114722.

[11]Wang Q*, Li L, Gu J, Weng N. A Dynamic Model for the Oscillatory Regime of Liquid Rise in Capillaries. Chemical Engineering Science, 2019: 115220.

[12]Gu J, Wu Y*, Tang G, Wang Q*, Lyu J. Experimental study of heat transfer and bubble behaviors of NaCl solutions during nucleate flow boiling. Experimental Thermal and Fluid Science, 2019, 109: 109907.

[13]Q Wang*, W Yao, H Zhang, X Lu. Analysis of the performance of an alkali metal thermoelectric converter (AMTEC) based on a lumped thermal-electrochemical model. Applied Energy, 216 (2018) 195-211.

[14]Q Wang, W Yao*, X Quan, P Cheng*. Validation of a Dynamic Model for Vapor Bubble Growth and Collapse under Microgravity Conditions. International Communications in Heat and Mass Transfer, 95 (2018) 63-73.

[15]Q Wang, J Gu, Z Li, W Yao*. Dynamic modeling of bubble growth in vapor-liquid phase change covering a wide range of superheats and pressures. Chemical Engineering Science, 172 (2017) 169-181.

[16]J Gu, Q Wang*, Y Wu*, J Lu, S Li, W Yao. Modeling of subcooled boiling by extending the RPI wall boiling model to ultra-high pressure conditions. Applied Thermal Engineering, 124 (2017) 571-584.

[17]Q Wang*, G Zhang, C Wang, R Ma, W Yao*. The electrically induced bubble behaviors considering different bubble injection directions. International Journal of Heat and Mass Transfer, 104 (2017) 729-742.

[18]Q Wang, W Yao*. Computation and validation of the interphase force models for bubbly flow. International Journal of Heat and Mass Transfer, 98 (2016) 799-813.

[19]Q Wang, Y Feng*, J Lu*, W Yin, H Yang, P J Witt, M Zhang. Numerical Study of Particle Segregation Behaviors in a Coal Beneficiation Fluidized Bed by a TFM-DEM Hybrid Model: Influence of Coal Particle Size and Density. Chemical Engineering Journal, 260 (2015) 240–257.

[20]Q Wang, H Yang, Y Feng*, P J Witt, J Lu*, W Yin. Numerical Study of the Influence of Operation Parameters on Particle Segregation in a Coal Beneficiation Fluidized Bed by a TFM-DEM Hybrid Model. Chemical Engineering Science, 131 (2015) 256-270.

[21]Q Wang*, W Yin, H Yang, J Lu*, B Zhao. Numerical study on the effect of fine coal accumulation in a coal beneficiation fluidized bed. Powder Technology, 283 (2015) 570-578.

[22]Q Wang, T Niemi, J Peltola, S Kallio, H Yang, J Lu*, L Wei. Particle Size Distribution in CPFD Modeling of Gas-Solid Flows in a CFB Riser, Particuology, 21 (2015) 107-117.

[23]Q Wang, W Yin, B Zhao, H Yang*, J Lu, L Wei. The Segregation Behaviors of Fine Coal Particles in a Coal Beneficiation Fluidized Bed, Fuel Processing Technology, 124 (2014) 28–34.

[24]Q Wang, H Yang, P Wang, J Lu*, Q Liu, H Zhang, L Wei, M Zhang. Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, Part I – Determination of modeling parameters, Powder Technology, 253 (2014) 814–821.

[25]Q Wang, H Yang, P Wang, J Lu*, Q Liu, H Zhang, L Wei, M Zhang. Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, Part II –Investigation of solids circulation, Powder Technology, 253 (2014) 822–828.

[26]Q Wang, J Lu, W Yin, H Yang*, L Wei. Numerical Study of Gas-Solid Flow in a Coal Beneficiation Fluidized Bed using Kinetic Theory of Granular Flow, Fuel Processing Technology, 111 (2013) 29–41.

专利
[1]王庆功,姚伟,王超. 一种地外水冰资源提取与利用系统及其实施方法. ZL202211378585.1
[2]顾君苹,王庆功,姚伟. 一种月面原位月壤聚光熔融成形打印铺粉装置及方法. ZL202210778929 .1
[3]顾君苹,王庆功,刘祎炜. 一种月壤静电同轴送粉装置及方法. ZL202210772254 .X
[4]王庆功,吕晓辰,孙玉成,毛叶飞,王磊. 一种用于激光晶体多层逆流式复合微通道散热器. ZL2020116238710.
[5]王庆功,姚伟,毛叶飞. 一种用于激光长条型晶体的蛇型微通道散热器. ZL2020116238725.
[6]王庆功,李龙,刘世杰,翁宁. 一种激光晶体直冲冷却式微通道散热器. ZL2020116303866.
[7]王庆功,马蓉,翁宁,欧阳毅. 等效实施微重力低温环境下气液分布的地面实验装置及方法. ZL201910672818.0
[8]王庆功,欧阳毅,姚伟. 一种非均匀内角结构式储液器. ZL201910672826.5
[9]王庆功,翁宁,王超. 一种基于反电润湿效应的油污表面自清洁装置和方法. ZL201910816477.X
[10]王庆功, 吕俊复, 刘青, 杨海瑞. 一种双炉排燃烧生物质设备. ZL201210190371.1
[11]王庆功, 吴玉新, 吕俊复, 尹炜迪, 韦鲁滨. 一种流化床干法选煤设备. ZL20110333878.3
获奖
[1]北京市科技新星计划(创新新星),北京市,2023年
[2]中国航天科技集团航天贡献奖(贡献奖),中国航天科技集团,2024年
[3]中国航天科技集团技术发明二等奖,中国航天科技集团,2024年
[4]中国航天科技集团首批钱学森青年创新基金,中国航天科技集团,2016年
[5]北京市优秀毕业生,北京市教育委员会,2015年
[6]清华大学热能工程系“学术新秀”称号,清华大学热能工程系,2015年
[7]黑龙江省优秀毕业生,黑龙江省教育委员会,2009年
代表性科研项目
[1]北京市科技新星计划(创新新星)“地外极端环境下水冰资源原位提取与氢氧制备关键技术”,2024.1-2026.12,主持
[2]科技部国家重点研发计划“空间微重力流体物理与热物理研究”分承研任务,2022.11-2026.1,主持
[3]国家自然科学基金面上基金“常/微重力条件下的动态电毛细现象及强化流体输运机理研究”,2021.1-2024.12,主持
[4]国家自然科学基金青年基金“空间环境下非重力效应主导的气液相间耦合机理及模型研究”,2017.1-2019.12,主持